Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Sequence analysis, in silico modeling and docking studies of caffeoyl CoA-O-methyltransferase of Populus trichopora.

Identifieur interne : 003125 ( Main/Exploration ); précédent : 003124; suivant : 003126

Sequence analysis, in silico modeling and docking studies of caffeoyl CoA-O-methyltransferase of Populus trichopora.

Auteurs : Navneet Phogat ; Vaibhav Vindal ; Vikash Kumar ; Krishna K. Inampudi ; Nirmal K. Prasad

Source :

RBID : pubmed:20169383

Descripteurs français

English descriptors

Abstract

Caffeoyl coenzyme A-O-methyltransferases (CCoAOMTs) which are characterized under class I plant OMTs, methylates CoA thioesters, with an in vitro kinetic preference for caffeoyl CoA. CCoAOMTs exhibit association with lignin biosynthesis by showing a prime role in the synthesis of guaiacyl lignin and providing the substrates for synthesis of syringyl lignin. The sequence analysis of CCoAOMT from Populus trichopora exhibits 58 nucleotide substitutions, where transitions overcome transversions. Validation of homology models of both CCoAOMT1 and 2 isoforms reveals that 92.4% and 96% residues are falling in the most favorable region respectively in the Ramachandran plot, indicating CCoAOMT2 as the more satisfactory model, and the overall quality factor of both isoforms is 98.174. The structural architecture analysis is showing very good packing of residues similar to protein crystal structures data. The active site residues and substrate-product interactions showed that CCoAOMT2 possesses more affinity toward caffeoyl CoA, feruloyl CoA, 5-hydroxy feruloyl CoA and sinapoyl CoA than CCoAOMT1, therefore it exist in a more active conformation. The affinity of CCoAOMT2 with feruloyl CoA is highest among all the affinities of both CCoAOMT isoforms with their substrates and products. This information has potential implications to understand the mechanism of CCoAOMT related enzymatic reactions in Populus trichopora, however the approach will be applicable in prediction of substrates and engineering 3D structures of other enzymes as well.

DOI: 10.1007/s00894-010-0656-1
PubMed: 20169383


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Sequence analysis, in silico modeling and docking studies of caffeoyl CoA-O-methyltransferase of Populus trichopora.</title>
<author>
<name sortKey="Phogat, Navneet" sort="Phogat, Navneet" uniqKey="Phogat N" first="Navneet" last="Phogat">Navneet Phogat</name>
<affiliation>
<nlm:affiliation>Department of Biotechnology, Goa University, Taleigao Plateau, Goa, India, 403206.</nlm:affiliation>
<wicri:noCountry code="subField">403206</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Vindal, Vaibhav" sort="Vindal, Vaibhav" uniqKey="Vindal V" first="Vaibhav" last="Vindal">Vaibhav Vindal</name>
</author>
<author>
<name sortKey="Kumar, Vikash" sort="Kumar, Vikash" uniqKey="Kumar V" first="Vikash" last="Kumar">Vikash Kumar</name>
</author>
<author>
<name sortKey="Inampudi, Krishna K" sort="Inampudi, Krishna K" uniqKey="Inampudi K" first="Krishna K" last="Inampudi">Krishna K. Inampudi</name>
</author>
<author>
<name sortKey="Prasad, Nirmal K" sort="Prasad, Nirmal K" uniqKey="Prasad N" first="Nirmal K" last="Prasad">Nirmal K. Prasad</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20169383</idno>
<idno type="pmid">20169383</idno>
<idno type="doi">10.1007/s00894-010-0656-1</idno>
<idno type="wicri:Area/Main/Corpus">003298</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003298</idno>
<idno type="wicri:Area/Main/Curation">003298</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003298</idno>
<idno type="wicri:Area/Main/Exploration">003298</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Sequence analysis, in silico modeling and docking studies of caffeoyl CoA-O-methyltransferase of Populus trichopora.</title>
<author>
<name sortKey="Phogat, Navneet" sort="Phogat, Navneet" uniqKey="Phogat N" first="Navneet" last="Phogat">Navneet Phogat</name>
<affiliation>
<nlm:affiliation>Department of Biotechnology, Goa University, Taleigao Plateau, Goa, India, 403206.</nlm:affiliation>
<wicri:noCountry code="subField">403206</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Vindal, Vaibhav" sort="Vindal, Vaibhav" uniqKey="Vindal V" first="Vaibhav" last="Vindal">Vaibhav Vindal</name>
</author>
<author>
<name sortKey="Kumar, Vikash" sort="Kumar, Vikash" uniqKey="Kumar V" first="Vikash" last="Kumar">Vikash Kumar</name>
</author>
<author>
<name sortKey="Inampudi, Krishna K" sort="Inampudi, Krishna K" uniqKey="Inampudi K" first="Krishna K" last="Inampudi">Krishna K. Inampudi</name>
</author>
<author>
<name sortKey="Prasad, Nirmal K" sort="Prasad, Nirmal K" uniqKey="Prasad N" first="Nirmal K" last="Prasad">Nirmal K. Prasad</name>
</author>
</analytic>
<series>
<title level="j">Journal of molecular modeling</title>
<idno type="eISSN">0948-5023</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Amino Acid Substitution (MeSH)</term>
<term>Biocatalysis (MeSH)</term>
<term>Catalytic Domain (MeSH)</term>
<term>Computational Biology (MeSH)</term>
<term>Conserved Sequence (MeSH)</term>
<term>Hydrogen Bonding (MeSH)</term>
<term>Isoenzymes (chemistry)</term>
<term>Isoenzymes (metabolism)</term>
<term>Methyltransferases (chemistry)</term>
<term>Methyltransferases (metabolism)</term>
<term>Models, Molecular (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Populus (enzymology)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Sequence Analysis, Protein (MeSH)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Substrate Specificity (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alignement de séquences (MeSH)</term>
<term>Analyse de séquence de protéine (MeSH)</term>
<term>Biocatalyse (MeSH)</term>
<term>Biologie informatique (MeSH)</term>
<term>Domaine catalytique (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Isoenzymes (composition chimique)</term>
<term>Isoenzymes (métabolisme)</term>
<term>Liaison hydrogène (MeSH)</term>
<term>Methyltransferases (composition chimique)</term>
<term>Methyltransferases (métabolisme)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Populus (enzymologie)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Spécificité du substrat (MeSH)</term>
<term>Substitution d'acide aminé (MeSH)</term>
<term>Séquence conservée (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Isoenzymes</term>
<term>Methyltransferases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Isoenzymes</term>
<term>Methyltransferases</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Isoenzymes</term>
<term>Methyltransferases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Isoenzymes</term>
<term>Methyltransferases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Amino Acid Substitution</term>
<term>Biocatalysis</term>
<term>Catalytic Domain</term>
<term>Computational Biology</term>
<term>Conserved Sequence</term>
<term>Hydrogen Bonding</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Sequence Alignment</term>
<term>Sequence Analysis, Protein</term>
<term>Sequence Homology, Amino Acid</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Analyse de séquence de protéine</term>
<term>Biocatalyse</term>
<term>Biologie informatique</term>
<term>Domaine catalytique</term>
<term>Données de séquences moléculaires</term>
<term>Liaison hydrogène</term>
<term>Modèles moléculaires</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Spécificité du substrat</term>
<term>Substitution d'acide aminé</term>
<term>Séquence conservée</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Caffeoyl coenzyme A-O-methyltransferases (CCoAOMTs) which are characterized under class I plant OMTs, methylates CoA thioesters, with an in vitro kinetic preference for caffeoyl CoA. CCoAOMTs exhibit association with lignin biosynthesis by showing a prime role in the synthesis of guaiacyl lignin and providing the substrates for synthesis of syringyl lignin. The sequence analysis of CCoAOMT from Populus trichopora exhibits 58 nucleotide substitutions, where transitions overcome transversions. Validation of homology models of both CCoAOMT1 and 2 isoforms reveals that 92.4% and 96% residues are falling in the most favorable region respectively in the Ramachandran plot, indicating CCoAOMT2 as the more satisfactory model, and the overall quality factor of both isoforms is 98.174. The structural architecture analysis is showing very good packing of residues similar to protein crystal structures data. The active site residues and substrate-product interactions showed that CCoAOMT2 possesses more affinity toward caffeoyl CoA, feruloyl CoA, 5-hydroxy feruloyl CoA and sinapoyl CoA than CCoAOMT1, therefore it exist in a more active conformation. The affinity of CCoAOMT2 with feruloyl CoA is highest among all the affinities of both CCoAOMT isoforms with their substrates and products. This information has potential implications to understand the mechanism of CCoAOMT related enzymatic reactions in Populus trichopora, however the approach will be applicable in prediction of substrates and engineering 3D structures of other enzymes as well.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20169383</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>01</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">0948-5023</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>16</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2010</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Journal of molecular modeling</Title>
<ISOAbbreviation>J Mol Model</ISOAbbreviation>
</Journal>
<ArticleTitle>Sequence analysis, in silico modeling and docking studies of caffeoyl CoA-O-methyltransferase of Populus trichopora.</ArticleTitle>
<Pagination>
<MedlinePgn>1461-71</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00894-010-0656-1</ELocationID>
<Abstract>
<AbstractText>Caffeoyl coenzyme A-O-methyltransferases (CCoAOMTs) which are characterized under class I plant OMTs, methylates CoA thioesters, with an in vitro kinetic preference for caffeoyl CoA. CCoAOMTs exhibit association with lignin biosynthesis by showing a prime role in the synthesis of guaiacyl lignin and providing the substrates for synthesis of syringyl lignin. The sequence analysis of CCoAOMT from Populus trichopora exhibits 58 nucleotide substitutions, where transitions overcome transversions. Validation of homology models of both CCoAOMT1 and 2 isoforms reveals that 92.4% and 96% residues are falling in the most favorable region respectively in the Ramachandran plot, indicating CCoAOMT2 as the more satisfactory model, and the overall quality factor of both isoforms is 98.174. The structural architecture analysis is showing very good packing of residues similar to protein crystal structures data. The active site residues and substrate-product interactions showed that CCoAOMT2 possesses more affinity toward caffeoyl CoA, feruloyl CoA, 5-hydroxy feruloyl CoA and sinapoyl CoA than CCoAOMT1, therefore it exist in a more active conformation. The affinity of CCoAOMT2 with feruloyl CoA is highest among all the affinities of both CCoAOMT isoforms with their substrates and products. This information has potential implications to understand the mechanism of CCoAOMT related enzymatic reactions in Populus trichopora, however the approach will be applicable in prediction of substrates and engineering 3D structures of other enzymes as well.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Phogat</LastName>
<ForeName>Navneet</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Department of Biotechnology, Goa University, Taleigao Plateau, Goa, India, 403206.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vindal</LastName>
<ForeName>Vaibhav</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kumar</LastName>
<ForeName>Vikash</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Inampudi</LastName>
<ForeName>Krishna K</ForeName>
<Initials>KK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Prasad</LastName>
<ForeName>Nirmal K</ForeName>
<Initials>NK</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>02</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>J Mol Model</MedlineTA>
<NlmUniqueID>9806569</NlmUniqueID>
<ISSNLinking>0948-5023</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007527">Isoenzymes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.1.1.-</RegistryNumber>
<NameOfSubstance UI="D008780">Methyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.1.1.104</RegistryNumber>
<NameOfSubstance UI="C059825">caffeoyl-CoA O-methyltransferase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019943" MajorTopicYN="N">Amino Acid Substitution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055162" MajorTopicYN="N">Biocatalysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020134" MajorTopicYN="N">Catalytic Domain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="Y">Computational Biology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006860" MajorTopicYN="N">Hydrogen Bonding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007527" MajorTopicYN="N">Isoenzymes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008780" MajorTopicYN="N">Methyltransferases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="Y">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020539" MajorTopicYN="Y">Sequence Analysis, Protein</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>09</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>01</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>2</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>2</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>1</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20169383</ArticleId>
<ArticleId IdType="doi">10.1007/s00894-010-0656-1</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 1998 Jul;117(3):761-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9662519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Dec;10(12):2033-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9836743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Aided Mol Des. 2004 Mar;18(3):167-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15368917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Feb;227(3):641-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17943312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Mar;137(3):1009-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15734921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 2001 Mar;8(3):271-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11224575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jul 1;31(13):3316-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12824316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1995 Jan 6;245(1):43-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7823319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2006 May;70(5):1269-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16717435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Jan;25(2):193-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11169195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1999 Jul;40(4):555-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10480380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Jun;14(6):1265-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12084826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1993 Sep;2(9):1511-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8401235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Model. 2009 Feb;15(2):203-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19048314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1994 Mar 24;368(6469):354-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8127373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Nov 24;275(47):36899-909</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10934215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2005 Dec;26(16):1781-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16222654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1998 Jul;37(4):663-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9687070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Oct;124(2):563-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11027707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Sep;121(1):215-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10482677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jan 1;34(Database issue):D173-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16381840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1989 Jun;271(2):488-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2499260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 1998 Apr 30;102(18):3586-616</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24889800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Lett. 2005 Dec;27(23-24):1861-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16328980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Nov 7;278(45):43961-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12941960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Dec;115(4):1341-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9414548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2006 Feb;67(4):387-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16412485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Sep 28;276(39):36831-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11459845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1998 Feb;36(3):427-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9484483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1994 Oct;6(10):1427-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7994176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W116-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16844972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1998 Jan;36(1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9484457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1993 Dec 5;234(3):779-815</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8254673</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Inampudi, Krishna K" sort="Inampudi, Krishna K" uniqKey="Inampudi K" first="Krishna K" last="Inampudi">Krishna K. Inampudi</name>
<name sortKey="Kumar, Vikash" sort="Kumar, Vikash" uniqKey="Kumar V" first="Vikash" last="Kumar">Vikash Kumar</name>
<name sortKey="Phogat, Navneet" sort="Phogat, Navneet" uniqKey="Phogat N" first="Navneet" last="Phogat">Navneet Phogat</name>
<name sortKey="Prasad, Nirmal K" sort="Prasad, Nirmal K" uniqKey="Prasad N" first="Nirmal K" last="Prasad">Nirmal K. Prasad</name>
<name sortKey="Vindal, Vaibhav" sort="Vindal, Vaibhav" uniqKey="Vindal V" first="Vaibhav" last="Vindal">Vaibhav Vindal</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003125 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003125 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20169383
   |texte=   Sequence analysis, in silico modeling and docking studies of caffeoyl CoA-O-methyltransferase of Populus trichopora.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20169383" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020